دوره 10، شماره 25 - ( پاییز 1398 )                   جلد 10 شماره 25 صفحات 78-69 | برگشت به فهرست نسخه ها


XML English Abstract Print


گروه علوم دامی، دانشکده کشاورزی، دانشگاه تبریز
چکیده:   (3019 مشاهده)
    پژوهش‌های پیشین تاثیر مثبت مکمل خوراکی آرژنین بر بهبود کیفیت گوشت و رشد را نشان داده‌اند، با این حال پژوهشی در مورد تاثیر تزریق درون تخم­مرغی آرژنین بر کیفیت گوشت وجود ندارد. بنابراین، این آزمایش با هدف بررسی تاثیر تزریق درون تخم‌مرغی غلظت‌های مختلف ال-آرژنین بر جوجه‌درآوری، عملکرد رشد و کیفیت گوشت جوجه‌های گوشتی راس 308 انجام شد. در این پژوهش، 300 تخم‌مرغ بارور از مزرعه مرغ مادر گوشتی در قالب طرح کاملا تصادفی با 3 تیمار آزمایشی (غلظت‌های 5/0 و 1 درصد آرژنین و شاهد کل) استفاده شد. گروه‌های آزمایشی شامل 1- تزریق درون تخم‌مرغی 5/0 درصد اسید آمینهال- آرژنین، 2- تزریق درون تخم‌مرغی 1 درصد اسید آمینه ال- آرژنین، 3- گروه شاهد کل {مجموع شاهد اول (تزریق آب استریل) و شاهد دوم (بدون تزریق)} بودند و تزریق در روز 14 دوره جوجه‌کشی انجام شد. پس از تفریخ، جوجه‌های تیمارهای آرژنین و گروه شاهد کل هر یک به چهار گروه مساوی تقسیم شده و در چهار قفس (تکرار) به صورت تصادفی قرار داده شدند. دوره پرورش از زمان تولد تا 24 روزگی ادامه یافت. به­منظور بررسی کیفیت گوشت، در روز‌ 24 تعداد 3 قطعه جوجه از هر تکرار (12 جوجه در هر تیمار) وزن‌کشی و کشتار شدند و ماهیچه سینه‌ای به منظور بررسی صفات کیفی گوشت استفاده شدند. بر اساس نتایج، تاثیر تزریق درون تخم‌مرغی غلظت‌های مختلف ال-آرژنین بر وزن جوجه 1، 10 و 24 روزه، افزایش وزن روزانه، مصرف خوراک، ضریب تبدیل غذایی، وزن نسبی لاشه پوست­کنده و ماهیچه سینه‌ای معنی‌دار نبود (05/0<p). اگرچه pH گوشت، درصد چربی گوشت، درصد خاکستر و شاخص‌های رنگ گوشت (*a، b*، L* و H) تحت تاثیر تیمارهای تزریق درون تخم‌مرغی ال-آرژنین قرار نگرفتند (05/0<p)، آب‌اندازی گوشت، مقدار ∆D و شاخص C به­طور معنی‌داری تحت تاثیر تیمارهای آزمایشی قرار گرفتند (05/0>p). بر اساس نتایج کلی پژوهش حاضر، تزریق درون تخم‌مرغی غلظت‌های مختلف ال-آرژنین نتوانست تاثیر معنی‌دار قابل توجهی بر عملکرد رشد، تولید و یا ترکیب گوشت جوجه‌های گوشتی 24 روزه داشته باشد.
 
 
متن کامل [PDF 439 kb]   (793 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: فیزیولوژی
دریافت: 1397/9/18 | ویرایش نهایی: 1398/9/18 | پذیرش: 1398/3/12 | انتشار: 1398/9/4

فهرست منابع
1. Al-Ghamdi, A.A. 2007. Evaluation of various honeybee foraging activities for identification of potential bee plants in Riyadh, Saudi Arabia. Annals of Agricultural Sciences, 52(2): 487.
2. Alexander, L.V., X. Zhang, T.C. Peterson, J. Caesar, B. Gleason, A.M.G. Klein Tank and A. Tagipour. 2006. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research Atmospheres, 111(5). [DOI:10.1029/2005JD006290]
3. Bahador, Y., M.R. Mohammadabadi, A. Khezri, M. Asadi and L. Medhati. 2016. Study of genetic diversity in honey bee populations in Kerman province using ISSR markers. J Research on Animal Production, 7(13): 192-186. [DOI:10.18869/acadpub.rap.7.13.192]
4. Chehrei, A., A.A. Haghdoost, S.M. Fereshtehnejad and A. Bayat. 2011. Statistical methods in medical science researches using SPSS software. Esfehan: Pejvake-Elme-Aria.
5. Contrera, F.A.L., V.L. Imperatriz-Fonseca and J.C. Nieh. 2004. Temporal and climatological influences on flight activity in the stingless bee Trigona hyalinata (Apidae, Meliponini). Revista Tecnologia e Ambiente, 10(2): 35-43.
6. Fallah Ghalhari, G., H. Ahmadi and M. Fakheri. 2016. Evaluate the climate calendar of beekeepers in West Azerbaijan province based on thermal conditions Geographical Researches Quarterly Journal, 31(1): 13-30.
7. Ghanbari, S. and Z. Nemati. 2018. Study on spatial suitability and economic evaluation of beekeeping in Arasbaran region and beekeepers problems. Animal Sciences Journal, 31(119): 83-92.
8. Golchin, M. and M. Jalali. 2013. Zoning Watershed for Artificial Recharge of Ground Water Using AHP and GIS Techniques. Geography and Planning, 17(45): 183-202.
9. Goulson, D. 2003. Bumblebees: their behaviour and ecology. Oxford University Press, USA.
10. Kouzegaran, S. 2018. Modeling of the Saffron yield based on meteorological extreme events (Case study: Birjand) Journal of Saffron Research, 5(2): 217-229.
11. Mohammadi, B., P. Mohammadkhani and M.H. Gholizadeh. 2017. Preparing Iran's Bioclimatic Map by Using the Predicted Mean Vote Index. Geographical Researches Quarterly Journal, 32(2): 21-39. [DOI:10.18869/acadpub.geores.32.2.21]
12. Mohammadi, P., J. Nazemi Rafie and J. Rostamzadeh. 2018. Evaluation of phylogenetic characteristics of Iranian honeybee (Apis mellifera meda) populations based on mitochondrial ND2 Gene. J Research on Animal Production, 9(21): 93-104. [DOI:10.29252/rap.9.21.93]
13. Mousavi, F.S., G.H. Tahmasbi, M. Khanjani and A. Pourmirza. 2007. Honeybee protection in the poisonous farms by using some repellents. Veterinary Researches and Biological Products, 20(4): 48-54.
14. Powell, J., S. Reinhard and C. Extremes. 2016. Measuring the effects of extreme weather events on yields. Weather, 12: 69-79. [DOI:10.1016/j.wace.2016.02.003]
15. Rosenzweig, C., A. Iglesias, X.B. Yang, P.R. Epstein and E. Chivian. 2001. Climate change and extreme weather events; implications for food production, plant diseases, and pests. Global Change and Human Health, 2(2): 90-104. [DOI:10.1023/A:1015086831467]
16. Sastry, P. and N.V.K. Chakravarty. 1982. Energy summation indices for wheat crop in India. Agricultural Meteorology, 27(1-2): 45-48. [DOI:10.1016/0002-1571(82)90018-8]
17. Stone, P. and M. Nicolas. 1994. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Functional Plant Biology, 21(6): 887-900. [DOI:10.1071/PP9940887]
18. Van der Velde, M., F.N., Tubiello, A. Vrieling and F. Bouraoui. 2012. Impacts of extreme weather on wheat and maize in France: evaluating regional crop simulations against observed data. Climatic change, 113(3-4): 751-765. [DOI:10.1007/s10584-011-0368-2]
19. Wardlaw, I.F., I.A. Dawson, P. Munibi and R. Fewster. 1989. The tolerance of wheat to high temperatures during reproductive growth. I. Survey procedures and general response patterns. Australian Journal of Agricultural Research, 40(1): 1-13. [DOI:10.1071/AR9890001]
20. Abdolalizadeh Alvanegh, F., M. Ebrahimi and H. Daghigh Kia. 2017. Effect of in ovo injection of different L-arginine to L-lysine ratios on body growth, muscle production, and blood metabolite concentrations of day old Ross broilers Iranian Journal of Animal Science, 48: 207-217 (In Persian).
21. Al-Daraji, H.J., A.A. Al-Mashadani, W.K. Al-Hayani, A.S. Al-Hassani and H.A. Mirza. 2011. Influence of in ovo injection of L-arginine on productive and physiological performance of quail. Research Opinions in Animal and Veterinary Sciences, 1: 463-467.
22. Al-Daraji, H.J., A.A. Al-Mashadani, W.K. Al-Mashadani, A.S. Al-Hassani and H.A. Mirza. 2012. Effect of in ovo injection with L-arginine on productive and physiological traits of Japanese quail. South African Journal of Animal Science, 42: 139-145. [DOI:10.4314/sajas.v42i2.6]
23. Allen, C.D., S.M. Russell and D.L. Fletcher. 1997. The Relationship of Broiler Breast Meat Color and pH to Shelf-Life and Odor Development. Poultry Science, 76: 1042-1046. [DOI:10.1093/ps/76.7.1042]
24. Ansari Pirsaraei, Z., A. Rahimi, H. Deldar, A.J. Sayyadi, M. Ebrahimi, A. Zareh Shahneh, M. Shivazad and M. Tebianian. 2018. Effect of feeding arginine on the growth performance, carcass traits, relative expression of lipogenic genes, and blood parameters of Arian broilers. Brazilian Journal of Poultry Science, 20: 363-370. [DOI:10.1590/1806-9061-2017-0620]
25. Ansari Pirsaraei, Z., M. Ebrahimi, A. Zare Shahneh, M. Shivazad and M. Tebianian. 2015. Determination of the best dietary level of L-arginine on improving growth performance, carcass traits and blood parameters in broiler chickens in the starter and grower periods. Research on Animal Production, 6: 87-95 (In Persian).
26. Association of Official Analytical Chemists (AOAC). 1984. Official Methods of Analysis. 14th edn. (Arlington, VA, Association of Official Analytical Chemists).
27. Ball, R.O., K.L. Urschel and P.B. Pencharz. 2007. Nutritional consequences of interspecies differences in arginine and lysine metabolism. The Journal of Nutrition, 137: 1626S-1641S. [DOI:10.1093/jn/137.6.1626S]
28. Barbut, S. 1993. Colour measurements for evaluating the pale soft exudative (PSE) occurrence in turkey meat. Food Research International, 26: 39-43. [DOI:10.1016/0963-9969(93)90103-P]
29. Berri, C., N. Wacrenier, N. Millet and E. Le Bihan-Duval. 2001. Effect of selection for body composition on muscle and meat characteristics of broilers from experimental lines. Poultry Science, 80: 833-838. [DOI:10.1093/ps/80.7.833]
30. Chartrin, P., K. Meteau, H. Juin, M.D. Bernadet, G. Guy, C. Larzul, H. Remignon, J. Mourot, M.J. Duclos and E. Baéza. 2006. Effects of intramuscular fat levels on sensory characteristics of duck breast meat. Poultry Science, 85: 914-922. [DOI:10.1093/ps/85.5.914]
31. Dransfeld, E. 1994. Modelling post-mortem tenderization-V: Inactivation of calpains. Meat Science, 37: 391-409. [DOI:10.1016/0309-1740(94)90055-8]
32. Dransfield, E. and A.A. Sosnicki. 1999. Relationship between muscle growth and poultry meat quality. Poultry Science, 78: 743-746. [DOI:10.1093/ps/78.5.743]
33. Ebrahimi, M., A. Zare Shahneh, M. Shivazad and Z. Ansari Pirsaraei. 2015. Evaluation of 24 days feeding L-arginin on performance, meat quality and blood metabolites in broilers. Animal Science Researches, 25: 61-72 (In Persian).
34. Ebrahimi, M., A. Zare Shahneh, M. Shivazad, Z. Ansari Pirsaraei and M. Ghafari Balesini. 2016. The effects of dietary L-arginine on some parameters of meat quality, intestine histology and immune system of 46-d old broiler chickens. Animal Science Researches, 26: 81-94 (In Persian).
35. Ebrahimi, M., A. Zare Shahneh, M. Shivazad, Z. Ansari Pirsaraei, M. Tebianian, C.A. Ruiz-Feria, M. Adibmoradi, K. Nourijelyani, F. Mohamadnejad. 2014a. The effect of feeding excess arginine on lipogenic gene expression and growth performance in broilers. British Poultry Science, 55: 81-88. [DOI:10.1080/00071668.2013.864381]
36. Ebrahimi, M., A. Zare Shahneh, M. Shivazad, Z. Ansari Pirsaraei, M. Tebianian, M. Adibmoradi, K. Nourijelyani. 2014b. The effects of dietary L-arginine on growth, meat production, and fat deposition in broiler chickens. Iranian Journal of Animal Science Researches, 5: 281-290 (In Persian).
37. Ebrahimi, M., F. Abdolalizadeh Alvanagh, M. Adibmoradi, H. Janmohammadi and Z. Rajabi. 2018. The impact of in ovo feeding with different L- arginine to L- lysine ratios on small intestine histological characteristics and immune system organs in day-old chicks. Animal Science Researches, 28: 177-191 (In Persian).
38. Edwards, N.M., N.D. Heberle and P.I. Hynd. 2016. The effect of in ovo administration of L-arginine on the hatchability and embryological development of broiler chicks. ASAP Animal Production 2016, Adelaide.
39. Fernandes, J.I.M., A.E. Murakami, E.N. Martins, M.I. Sakamoto and E.R.M. Garcia. 2009. Effect of arginine on the development of the pectoralis muscle and the diameter and the protein: deoxyribonucleic acid rate of its skeletal myofibers in broilers. Poultry Science, 88: 1399-1406. [DOI:10.3382/ps.2008-00214]
40. Fletcher, D.L. 1999. Broiler breast meat color variation, pH, and texture. Poultry Science, 78: 1323-1327. [DOI:10.1093/ps/78.9.1323]
41. Froning, G.W., A.S. Babji and F.B. Mather. 1978. The effect of pre-slaughter temperature, stress, struggle and anesthetization on color and textural characteristics of turkey muscle. Poultry Science, 57: 630-633. [DOI:10.3382/ps.0570630]
42. Gaafar, K.M., S.A. Selim and S.S. El-ballal. 2013. Effect of in-ovo administration with two levels of amino acids mixture on the performance of Muscovy ducks. Emirates Journal of Food and Agriculture, 25: 58-65. [DOI:10.9755/ejfa.v25i1.9666]
43. Gao, T., M.M. Zhao, Y.J. Li, L. Zhang, J.L. Li, L.L. Yu, F. Gao and G.H. Zhou. 2017. Effects of in ovo feeding of L-arginine on the development of digestive organs, intestinal function and post-hatch performance of broiler embryos and hatchlings. Journal of Animal Physiology and Animal Nutrition, 1-10. [DOI:10.1111/jpn.12724]
44. Go, G.W., G. Wu and S.B. Smith. 2009. The growth performance, carcass traits, meat pH and color, and CO2 production in pigs supplementated arginine with conjugated linoleic acid. ASEB Journal, 23: 732-735.
45. Hurling, R., J.B. Rodell and H.D. Hunt. 1996. Fiber diameter and fish texture. Journal of Texture Studies, 27: 679-685. [DOI:10.1111/j.1745-4603.1996.tb01001.x]
46. Jiao, P., Y. Guo, X. Yang and F. Long. 2010. Effect of dietary arginine and methionine levels on broiler carcass traits and meat quality. Journal of Animal and Veterinary Advances, 9: 1546-1551. [DOI:10.3923/javaa.2010.1546.1551]
47. Jobgen, W.S., S.K. Fried, W.J. Fu, C.J. Meininger and G. Wu. 2006. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. The Journal of Nutritional Biochemistry, 17: 571-588. [DOI:10.1016/j.jnutbio.2005.12.001]
48. Letsoalo, T.M.C. 2016. Effect of in ovo injection of glucose on egg hatchability, chick hatch-weight, productivity and carcass characteristics of indigenous Potchefstroom Koekoek chickens. Doctoral dissertation, University of Limpopo.
49. Ma, X., Y. Lin, Z. Jiang, C. Zheng, G. Zhou, D. Yu, T. Cao, J. Wang and F. Chen. 2010. Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs. Amino Acids, 38: 95-102. [DOI:10.1007/s00726-008-0213-8]
50. Maiorano, G., A. Sobolewska, D. Cianciullo, K. Walasik, G. Elminowska-Wenda, A. Sławińska, S. Tavaniello, J. Żylińska, J. Bardowski and M. Bednarczyk. 2012. Influence of in ovo prebiotic and synbiotic administration on meat quality of broiler chickens. Poultry Science, 91: 2963-2969. [DOI:10.3382/ps.2012-02208]
51. Munir, K., M.A. Muneer, E. Masaoud, A. Tiwari, A. Mahmud, R.M. Chaudhry and A. Rashid. 2009. Dietary arginine stimulates humoral and cell-mediated immunity in chickens vaccinated and challenged against hydropericardium syndrome virus. Poultry Science, 88: 1629-1638. [DOI:10.3382/ps.2009-00152]
52. Piedrafita, J., R. Quintanilla, C. Sañudo, J.L. Olleta, M.M. Campo, B. Panea, G. Renand, F. Turin, S. Jabet, K. Osoro and M.C. Olivan. 2003. Carcass quality of 10 beef cattle breeds of the southwest of Europe in their typical production systems. Livestock Production Science, 82: 1-13. [DOI:10.1016/S0301-6226(03)00006-X]
53. Priolo, A., D. Micol and J. Agabriel. 2001. Effects of grass feeding systems on ruminant meat colour and flavour. A review. Animal Research, 50: 185-200. [DOI:10.1051/animres:2001125]
54. Rey, C.R., A.A. Kraft, D.G. Topel, F.C. Parrish and D.K. Hotchkiss. 1976. Microbiology of pale, dark and normal pork. Journal of Food Science, 41: 111-116. [DOI:10.1111/j.1365-2621.1976.tb01114.x]
55. Saenmahayak, B., M. Singh, S.F. Bilgili and J.B. Hess. 2012. Influence of dietary supplementation with complexed zinc on meat quality and shelf life of broilers. International Journal of Poultry Science, 11: 28-32. [DOI:10.3923/ijps.2012.28.32]
56. SAS Institute Inc. 2008. SAS/STAT User's Guide, Version 9.2. Cary, NC: SAS Institute Inc.
57. Schreurs, F.J.G., D. Van Der Heide, F.R. Leenstra and W. De Wit. 1995. Endogenous proteolytic enzymes in chicken muscles. Differences among strains with different growth rates and protein efficiencies. Poultry science, 74: 523-537. [DOI:10.3382/ps.0740523]
58. Simões, J.A. 2006. Chemical and colour evaluation of meat from several Portuguese cattle breeds. Revista Portuguesa de Ciências Veterinárias, 559: 241.
59. Tan, B., Y. Yin, Z. Liu, X. Li, H. Xu, X. Kong, R. Huang, W. Tang, I. Shinzato, S.B. Smith and G. Wu. 2009. Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids, 37: 169-175. [DOI:10.1007/s00726-008-0148-0]
60. Warner, R.D., P.L. Greenwood, D.W. Pethick and D.M. Ferguson. 2010. Genetic and environmental effects on meat quality. Meat Science, 86: 171-183. [DOI:10.1016/j.meatsci.2010.04.042]
61. Wu, L.Y., Y.J. Fang and X.Y. Guo. 2011. Dietary L-arginine supplementation beneficially regulates body fat deposition of meat-type ducks. British Poultry Science, 52: 221-226. [DOI:10.1080/00071668.2011.559452]
62. Xu, Y.Q., Y.W. Guo, B.L. Shi, S.M. Yan and X.Y. Guo. 2018. Dietary arginine supplementation enhances the growth performance and immune status of broiler chickens. Livestock Science, 209: 8-13. [DOI:10.1016/j.livsci.2018.01.001]
63. Zhang, H., K.E.C. Elliott, O.A. Durojaye, S.A. Fatemi, M.W. Schilling and E.D. Peebles. 2019. Effects of in ovo injection of L-ascorbic acid on growth performance, carcass composition, plasma antioxidant capacity and meat quality in broiler chickens. Poultry science, doi: 10.3382/ps/pez173. [DOI:10.3382/ps/pez173]
64. Zhao, M.M., D.Q. Gong, T. Gao, L. Zhang, J.L. Li, P.A. Lv, L.L. Yu, F. Gao and G.H. Zhou. 2017. In ovo feeding of creatine pyruvate increases hatching weight, growth performance, and muscle growth but has no effect on meat quality in broiler chickens. Livestock Science, 206: 59-64. [DOI:10.1016/j.livsci.2017.10.013]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.