Volume 8, Issue 18 (3-2018)                   rap 2018, 8(18): 20-29 | Back to browse issues page


XML Persian Abstract Print


Abstract:   (4554 Views)
The aim of this study was to compare the levels of chlorella vulgaris microalgae extract with additives on performance, carcass characteristics and blood biochemical metabolites in heat-stressed broilers. This experiment has been done using 280 one day-old Ross 308 broiler chicks for 6 weeks. This experiment has been done in completely randomized design with 7 treatments and 4 replicates. Experimental treatments were including: 1- control; 2- diet containing 0.2 g/Kg chlorella extract; 3- diet containing 0.4 g/Kg chlorella extract; 4- diet containing 100 mg/Kg vitamin E; 5- diet containing prebiotic; 6- diet containing probiotic; 7- diet containing antibiotic. Heat stress program applied from 25-42 d.Treatment 2 caused an increase of feed intake and weight gain in comparison to other treatments (P<0.05). Treatment 3 showed the lowest conversion ratio in comparison to other treatments (P<0.05). Concentration of glucose, protein, albumin and HDL were increased with consumption of treatment2 in comparison with other treatments. The most and the least concentration of cholesterol, triglyceride and VLDL was observed in control and treatment 2, respectively. Weight of empty carcass and proventriculus had the most increase in treatments 2 and 3 (P<0.05). Generally, chlorella in concentration of 0.2 g/kg can be a suitable substitution for other additives specially antibiotics in order to improve the performance of boilers.  
Full-Text [PDF 279 kb]   (1947 Downloads)    
Type of Study: Research | Subject: Special
Received: 2018/02/28 | Revised: 2018/03/3 | Accepted: 2018/02/28 | Published: 2018/02/28

References
1. Becker, E.W. and L.V. Venkataraman. 1982. Biotechnology and Exploitation of Algae: The Indian approach. German Agency for Technical Cooperation, Eschborn, West Germany.
2. Becker, W. 2004. Microalgae in human and animal nutrition. In Handbook of Microalgae Culture: Biotechnology and Applied Psychology (Ed. A. Richmond). Blackwell, Oxford, UK. 312-351. [DOI:10.1002/9780470995280.ch18]
3. Blum, J.C. and C. Calet. 1976. Valeur alimentaire des algues spirulines pour Ia crossance du poulet de chair. Annales De La Nutrition ET De Alimentation, 29: 551-574.
4. Borowitzka, M.A. 1988. Vitamins and fine chemicals from microalgae. In:Micro-algal biotechnology. Edited by Borowitzka L.J. New York: Cambridge University Press. 153p.
5. Brenes, A. and E. Roura. 2010. Essential oils in poultry nutrition: Main effects and modes of action. Animal Feed Science and Technology, 158: 1-14. [DOI:10.1016/j.anifeedsci.2010.03.007]
6. Brune, H. 1982. Zur Vertraglichkeit der Einzelleralgen Spirulina maxima und Scenedesmus acutus als alleinige Eiweibquelle fur Broiler. Z. Tierphysiol. Tieremachr. Futtermittelkd. 48: 143-154. [DOI:10.1111/j.1439-0396.1982.tb01384.x]
7. Cavazzoni, V., A. Adami and C. Castrovilli. 1998. Performance of chickens supplemented with Bacillus coagulans as probiotic. British. Poultry Science, 39: 526-529. [DOI:10.1080/00071669888719]
8. Chiang, S.H and W.H. Hsieh. 1994. Effects of direct fed microorganisms on broiler growth performance and litter ammonia level. Asian-Australian Journal of AnimalScience, 8: 159-162. [DOI:10.5713/ajas.1995.159]
9. Combs, G.F. 1952. Algae (chlorella) as a source of nutrients for the chick. Science, 116: 453-454. [DOI:10.1126/science.116.3017.453]
10. Eggum, B.O. 1989. Biochemical and methodological principles. In: Rock, H.D.; Eggum, B.O.; Low, A.G.; Simon, O. and T. Zebrowska. (Eds.). Protein metabolism in farm animals, Oxford Science Publications. Berlin. pp: 1-52.
11. El-khimsawy, K.A. 1985. Feed additive in poultry feeds. Dar. El-Hwda for publication. Cairo, Egypt (In Arabic).
12. Evans, A.M., D.L. Smith and J.S. Moritz. 2015. Effects of algae incorporation into broiler starter diet formulations on nutrient digestibility and 3 to 21 d bird performance. Journal of Applied Poultry Research, 24: 206-214. [DOI:10.3382/japr/pfv027]
13. Fong, B., M. Cheung and M. Lee. 2000. Effect of dietary Spirulina on plasma cholesterol and triglyceride levels in mice. In: Abstracts. 4th Asia-Pacific Conference on Algal Biotechnology, 150 pp.
14. Kang, H.K., H.M. Salim, N. Akter, D.W. Kim, J.H. Kim, H.T. Bang, M.J. Kim, J.C. Na, J. Hwangbo, H.C. Choi and O.S. Suh. 2013. Effect of various form of dietary Chlorella supplementation on growth performance, immune characteristics and intestinal micro flora population of broiler chickens. Journal of Applied Poultry Research, 22(1): 100-108. [DOI:10.3382/japr.2012-00622]
15. Kaoud, H.A. 2013. Effect of Spirulina platensisas a dietary supplement on broiler performance in comparison with prebiotics. Scientific Journal of Applied Research,1(2):42-46.
16. Kaoud, H.A. 2012. Effect of Spirulina platensis as a dietary supplement on broiler performance in comparison with prebiotics. Scientific Journal of Applied Research,1-2, pp: 44-48.
17. Kharde, S.D., R.N. Shirbhate, K.B. Bahiram and S.F. Nipane. 2012. Effect of Spirulina supplementation on growth performance of broilers. Indian Journal of Veterinary Research, 21(1): 66-69.
18. Kotrbacek, V., J. Doubek and J. Doucha. 2015. The chlorococcalean algaechlorella in animal nutrition: a review. Journal of Applied Phycology.In press. [DOI:10.1007/s10811-014-0516-y]
19. Lum, K.K., J. Kim and X.G. Lei. 2013. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed." Journal of Animal Science Biotechnology, 4(1): 53. [DOI:10.1186/2049-1891-4-53]
20. Macari, V., V. Putin, V. Rudic, V. Gudumac and A. Macari. 2010. Effects of the Bior Remedy on the trypsin-antitrypsin system and the productivity indexes in broilers. Bulletin Uasvm, Veterinary Medicine, 67(1): 95-100.
21. Mariey, Y.A., H.R. Samak and M.A. Ibrahem. 2012. Effect of using Spirulina platensis algae as a feed additive for poultry diets: 1- Productive and reproductive performances of local laying hens. Journal of Egyptian Poultry Science, 32(1): 201-215.
22. Mariey, Y.A., H.R. Samak, H.A. Abou-Khashba, M.A.M. Sayed and A.E. Abou-Zeid. 2014. Effect of using spirullina platensis algae as a feed additive for poultry diet. Egyptian Poultry Science Journal, 34: 245-258.
23. Moradi Kor, N. and N. Mohamadi. 2015. The effects of different levels Chlorella microalgae on performance and immune response of laying hens under heat stress condition. International Journal of Life Science, 9(2):71-74. [DOI:10.3126/ijls.v9i2.12058]
24. Muhling, M., A. Belay and B.A. Whitton. 2005. Variation in fatty acid composition of arthrospira (spirulina) strains. Journal of Applied Physiology, 17: 137-146 [DOI:10.1007/s10811-005-7213-9]
25. National Research Council, 1994. Nutrient requirements of poultry. 9th Revised Edition, National Academy Press, Washington, D.C.
26. Nazarenko, R., M. Kuchkarova, A. Lavrov, A. Tulaganov and E. Zaripov. 1975. Study of the effect of the suspended matter of the alga spirulina platensis on egg production and live weight of chickens (feed supplement). Uzbekskii Biologicheskii Zhurnal, 19: 21-23.
27. Njoku, P.C. 1986. Effect of dietary ascorbic acid (vitamin C) supplementation on the performance of broiler chicken in a tropical environment. Journal of Animal Feed Science and Technology, 16(1/2):17-24. [DOI:10.1016/0377-8401(86)90046-5]
28. Oh, S., T.L. Zheng, H.J. Kwon, Y.K. Choo, K.W. Lee, C.W. Kang and B.K. An. 2015. Effects of dietary fermented Chlorella vulgaris (VBT) on growth performance, relative organ weights. Cecal micro flora, tibia characteristics and meat qualities in pekin ducks. Asian-Australas Journal of Animal Science, 28(1):95-101. [DOI:10.5713/ajas.14.0473]
29. Peiretti, P.G. and G. Meineri. 2008. Effects of diets with increasing levels of spirulina platensis on the performance and apparent digestibility in growing rabbits. Livestock Science, 118: 173-177 [DOI:10.1016/j.livsci.2008.04.017]
30. Raach-Moujahed, A., S. Hassani, S. Zairi, M. Bouallegue, C. Darej, B. Haddad and C. Damergi. 2011. Effect of dehydrated Spirulina platensis on performances and meat quality of broilers. Research on Animal Veterinary Science, 1 (8):505-509.
31. Rahimi, S.H. and A. Khaksefidi. 2006. A comparison between the effects of a probiotic (Bioplus 2B) and an antibiotic (virginiamycin) on the performance of broiler chickens under heat stress condition. Iranian Journal of Veterinary Research, 7(3).
32. Rezvani, M., M. Shivazad, M. Zaghari and H. Moravej. 2012. A survey on Chlorella vulgaris effect׳son performance and cellular immunity in broiler. International Journal of Agricultural Science Research, 3(1): 10-15.
33. Ross, E.W. Dominy. 1990. The nutritional value of dehydrated, blue-green algae (spirulina platensis) for poultry. Poultry Science, 69: 794-800. [DOI:10.3382/ps.0690794]
34. Ross, E., D.P. Puapong, F.P. Cepeda and P.H. Patterson. 1994. Comparison of freeze-dried and extruded spirullina platensis as youlk pigmenting agents. Poultry Science, 73: 1282. [DOI:10.3382/ps.0731282]
35. Sahin, K., N. Sahin and O. Kucuk. 2003. Effects of chromium and ascorbic acid supplementation on growth, carcass traits, serum metabolites and antioxidant status of broiler chickens reared at a high ambient temperature (32ºC). Journal of Nature Research, 23: 225-238. [DOI:10.1016/S0271-5317(02)00513-4]
36. Safi, C., B. Zebib, O. Merah, P. Pontalier and C. Vaca-Garcia. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review," Renewable and Sustainable Energy Reviews, 35: 265-278. [DOI:10.1016/j.rser.2014.04.007]
37. Salvia, M., Y. Marlida and E. Purwati. 2014. The optimizing of growth and quality of Chlorella vulgaris as ASUH feed supplement for broiler. International Journal of Advanced Science Engineering, 4(4): 90-93. [DOI:10.18517/ijaseit.4.4.421]
38. SAS Institute. 2004. SAS User guide: Statistics. Version 9.1edn. (Cary, NC, SAS Institute Inc.)
39. Sakakibara, M. and S. Hamada. 1994. Lowering agent of death rate of young quail. Japanese patent 200664.
40. Schubert, L.E. 1988. The use of spirulina and chlorella as food resource for animals and humans. In: Progressing physiological research. Edited by Round FE, Chapman DJ. Bristol, U.K.: Biopress Ltd; 23
41. Seven, I., T. Aksu and P.T. Seven. 2010. The effects of propolis on biochemical parameters and activity of antioxidant enzymes in broiler exposed to lead-induced oxidative stress. Asian-Australian Journal of Animal Science, 23(11): 1482-1489. [DOI:10.5713/ajas.2010.10009]
42. Shanmugapriya, B., S.S. Babu, T. Hariharan, S. Sivaneswaran and M.B. Anusha. 2015. Dietary administration of spirulina platensis as probiotics on growth performance and histopathology in broiler chicks. International Journal of Scientific Research, 6: 2650-2653.
43. Spolaore, P.C., Joannis-Cassan. E. Duran and A. Isambert. 2006. Commercial applications of microalgae. Journal of Bioscience Bioengineering, 101(2): 86-96 [DOI:10.1263/jbb.101.87]
44. Takekoshi, H., G. Suzuki and H. Chubachi. 2005. Effects of chlorella pyrenoidosa on fecal excretion and liver accumulation of polychlorinated dibenzo-p-dioxin in mice. Chemosphere 59:297-304 [DOI:10.1016/j.chemosphere.2004.11.026]
45. Tewe, O.O. 1985. Protein metabolism in growing pigs fed corn or cassava peel based diets containing graded protein levels. Research on Veterinary Science, 29: 259-263. [DOI:10.1016/S0034-5288(18)31790-9]
46. Torres-Duran, P.V., R. Miranda-Zamora, M.C. Paredes-Carbajal, D. Mascher, J.C. Diaz-Zagoya and M. Juarez-Oropez. 1998. Spirulina maxima prevent induction of fatty liver by carbon tetrachloride in the rat. Biochemical Molecule International, 44: 787-793. [DOI:10.1080/15216549800201832]
47. Yeo, J. and K.I. Kim. 1997. Effect of feeding diets containing an antibiotic, a probiotic, or yucca extract on growth and intestinal urease activity in broiler chicks. Poultry Science, 76: 381-385. [DOI:10.1093/ps/76.2.381]
48. Yoshida, M.H. and Hoshii. 1980. Nutritive value of spirulina, green algae, for poultry feed. Japanese Poultry Science, 17: 27-30 [DOI:10.2141/jpsa.17.27]
49. Zeng, T.J., J. Li, D.P. Wang, G.Q. Li, G.L. Wang and L.Z. Lu. 2014. Effects of heat stress on antioxidant defense system, inflammatory injury and heat shock proteins of Muscovy and Pekin ducks: evidence for differential thermal sensitivities. Journal of cellular Structure, 19:895-901. [DOI:10.1007/s12192-014-0514-7]
50. Zheng, L., S.T. Oh, J.Y. Jeon, B.H. Moon, H.S. Kwon, S.U. Lim, B.K. and C.W. Kang. 2012. The dietary effects of fermented Chlorella vulgaris (CBT) on production performance, liver lipids and intestinal microflora in laying hens. Asian and Australian Journal of Animal Science, 25(2): 261-266. [DOI:10.5713/ajas.2011.11273]
51. Zulkifli, I., N. Abdullah, N. Mohd Azrin and Y.W. Ho. 2000. Growth performance and immune response of two commercial broiler strains fed diet containing lactobacillus cultures and oxytetracycline under heat stress condition. British Poultry Science, 593-597. [DOI:10.1080/713654979]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.