دوره 8، شماره 15 - ( بهار 1396 )                   جلد 8 شماره 15 صفحات 201-209 | برگشت به فهرست نسخه ها


XML English Abstract Print


چکیده:   (736 مشاهده)

هدف از مطالعه حاضر، برآورد مؤلفه­های واریانس ژنتیکی و محیطی دائمی و روند ژنتیکی و فنوتیپی رکوردهای روزآزمون امتیاز سلول­های سوماتیک (SCS) دوره اول شیردهی گاوهای هلشتاین ایران بود. داده­ها شامل 108995 رکورد روزآزمون بودند که طی سال­های 1380 تا 1389 توسط مرکز اصلاح نژاد و بهبود تولیدات دامی جمع­آوری شدند. برای تعیین اثرات ثابت برازش یافته در مدل آنالیز از رویه GLM نرم­افزار SAS و آنالیز ژنتیکی با استفاده از الگوریتم AIREML نرم­افزار WOMBAT انجام شد. 16 مدل رگرسیون تصادفی متفاوت مطالعه و بر اساس معیار اطلاعات آکایک (AIC) با هم مقایسه شدند و مدل رگرسیون تصادفی با درجات برازش به ترتیب 4، 4 و 5 برای رگرسیون ثابت، اثر تصادفی ژنتیکی افزایشی و محیطی دائمی به عنوان بهترین مدل در نظر گرفته شد. واریانس باقی‌مانده در چهار سطح ناهمگن در طول دوره شیردهی در نظر گرفته شد. وراثت‌پذیری برآورد شده بسیار پایین (022/0 تا 032/0) بود که نشان‌دهنده این است که این صفت بیشتر تحت تأثیر اثرات محیطی است. هم‌بستگی ژنتیکی و محیطی در روزهای نزدیک به هم بالا و بین روزهای اول و آخر دوره شیردهی پایین بود. هم‌چنین، هم‌بستگی محیطی برآورد شده در کلیه مراحل شیردهی کمتر از هم‌بستگی ژنتیکی بود. روند ژنتیکی و فنوتیپی سالانه برای SCS به ترتیب 103/0±59/0- و 002/0±08/0- برآورد شد. روند ژنتیکی و فنوتیپی معنی­دار بودند (p<0.0001). روند ژنتیکی و فنوتیپی منفی نشان‌دهنده موفقیت برنامه­های اصلاح نژادی در کاهش بروز ورم پستان در گاوهای هلشتاین ایران است.

متن کامل [PDF 579 kb]   (264 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي

فهرست منابع
1. Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. Proceeding of 2nd international symposium of information theory, Budapest, Hungary, 267-281.
2. Bakhtiarizadeh, M.R., M. Moradi Shahr Babak and A. Pakdel. 2010. Estimation of udder composite in the holstein population of Iran. Journal of Dairy Science, 93 (E-Suppl. 1): 597.
3. Bignardi, A.B., L. EL Faro, V.L. Cardoso, P.F. Machado and L.G. de Albuquerque. 2009. Random regression models to estimate test-day milk yield genetic parameters holstein cows in southeastern Brazil. Livestock Science, 123: 1-7. [DOI:10.1016/j.livsci.2008.09.021]
4. Bloemhof, S., G. de Jong and Y. de Haas. 2009. Genetic parameters for clinical mastitis in the first three lactations of dutch holstein cattle. Veterinary Microbiology, 134: 165-171. [DOI:10.1016/j.vetmic.2008.09.024]
5. Boichard, D. and R. Rupp. 1997. Genetic analysis and genetic evaluation for somatic cell score in french dairy cattle. proceedings of the international workshop on genetic improvement of functional traits in cattle, uppsala, Sweden, June, Interbull Bulletin no, 15: 54-60.
6. Brotherstone, S., I.M.S. White and K. Meyer. 2000. Genetic modeling of daily yields using orthogonal polynomials and parametric curves. Journal of Animal Science, 70: 407-415. [DOI:10.1017/S1357729800051754]
7. Burnham, K.P. and D.R. Anderson. 1998. Model selection and inference: a practical information-theoretic approach, springer-verlag, New York, USA, 488 pp. [DOI:10.1007/978-1-4757-2917-7]
8. Carlen, E., E. Strandberg and A. Roth. 2004. Genetic parameters for clinical mastitis, somatic cell score, and production in the first three lactations of Swedish Holstein Cows. Journal of Dairy Science, 87: 3062-3070. [DOI:10.3168/jds.S0022-0302(04)73439-6]
9. Elsaid, R., A. Sabry, M.S. Lund and P. Madsen. 2011. Genetic analysis of somatic cell score in danish dairy cattle using random regression test-day model. Livestock Science, 140: 95-102. [DOI:10.1016/j.livsci.2011.02.013]
10. Ghavi Hossein-Zadeh, N. and M. Ardalan. 2011. Estimation of genetic parameters for milk urea nitrogen and its relationship with milk constituents in Iranian Holsteins. Livestock Science, 135: 274-281. [DOI:10.1016/j.livsci.2010.07.020]
11. Ghavi Hossein-Zadeh, N., A. Nejati-Javaremi, S.R. Miraei-Ashtiani and H. Kohram. 2008. An observational analysis of twin births, calf stillbirth, calf sex ratio, and abortion in Iranian Holsteins. Journal of Dairy Science, 91: 4198-4205. [DOI:10.3168/jds.2008-1079]
12. Haile Mariam, M., M.E. Goddard and P.J. Bowman. 2001a. Estimates of genetic parameters for daily somatic cell count of australian dairy cattle. Journal of Dairy Science, 84: 1255-1264. [DOI:10.3168/jds.S0022-0302(01)74587-0]
13. Haile-Mariam, M., P.J. Bowman and M.E. Goddard. 2001b. Genetic and environmental correlations between test-day somatic cell count and milk yield traits. Livestock Production Science, 73: 1-13. [DOI:10.1016/S0301-6226(01)00232-9]
14. Jaffrézic, F., I.M.S. White, R. Thompon and W.G. Hill. 2000. A Link function approach to model heterogeneity of residual variances over time in lactation curve analyses. Journal of Dairy Science, 83: 1089-1093. [DOI:10.3168/jds.S0022-0302(00)74973-3]
15. Jamrozik, J. and L.R. Schaeffer. 1997. Estimates of genetic parameters for a test day model with random regressions for yield traits of first lactation holsteins. Journal of Dairy Science, 80: 762-770. [DOI:10.3168/jds.S0022-0302(97)75996-4]
16. Jamrozik, J., L.R. Schaeffer and F. Grignola. 1998. Genetic parameters for production traits and somatic cell score of canadian holsteins with multiple trait random regression model, Proceedings of 6th WCGALP, 303-306 pp.
17. Jamrozik, J., L.R. Schaeffer, Z. Liu and G. Jansen. 1997. Multiple traits random regression test day model for production traits. proceedings of 1997 interbull meeting, Vienna, Austria, 43-47.
18. Juga, J., E.A. Mäntysaari and J. Pösö. 1999. Economic response to total merit selection in finnish ayrshire breeding. proceedings of the international workshop on EU concerted action on genetic improvement of functional traits in cattle (gift); breeding goals and selection schemes, wageningen, the netherlands, Interbull Bulletin, 23: 79- 87.
19. Kadarmideen, H.N. and J.E. Pryce. 2001. Genetic and economic relationships between somatic cell count and clinical mastitis and their use in selection for mastitis resistance in dairy cattle. Journal of Animal Science, 73: 229-240. [DOI:10.1017/S135772980005801X]
20. Kheirabadi, K. and S. Alijani. 2014. Comparison of two singles- and multiple trait random regression models in estimation of genetic parameters of production traits in holstein dairy cattle. Research on Animal Production, 5: 179-189.
21. Koivula, M., E. Negussie and E.A. Mäntysaari. 2004. Genetic parameters for test-day somatic cell count at different lactation stages of finnish dairy cattle. Livestock Production Science, 90: 145-157. [DOI:10.1016/j.livprodsci.2004.03.004]
22. Lopez-Romero, P. and M.J. Carabano. 2003. Comparing alternative random regression models to analyse first lactation daily milk yield data in holstein friesian cattle. Livestock Production Science, 82: 81-96. [DOI:10.1016/S0301-6226(03)00003-4]
23. Lund, T., F. Miglior, J.C.M. Dekkers and E.B. Burnside. 1994. Genetic relationships between clinical mastitis, somatic cell count, and udder conformation in Danish Holsteins. Livestock Production Science, 39: 243-255. [DOI:10.1016/0301-6226(94)90203-8]
24. Meyer, K. 1998. Estimating covariance functions for longitudinal data using a random regression model. Genetics Selection Evolution, 30: 221-240. [DOI:10.1186/1297-9686-30-3-221]
25. Meyer, K. 2011. Wombat a program for mixed model analyses by restricted maximum likelihood. univesity of New England, http://didgeridoo.une.edu.au/km/WOMBAT/WWW/manual.html.
26. Miller, R.H., M.J. Paape and L.A. Fulton. 1991. Variation in milk somatic cells of heifers at first calving. Journal of Dairy Science, 74: 3782-3790. [DOI:10.3168/jds.S0022-0302(91)78570-6]
27. Mohammadpanah, M., H. Farhangfar and M. Bashtani. 2016. Genetic analysis of raw and energy-corrected test day milk traits in iranian first lactation Holstein Cows. Research on Animal Production, 7: 153-162.
28. Mrode, R.A. and G.J.T. Swanson. 1996. Genetic and statistical properties of somatic cell count and its suitability as an indirect means of reducing the incidence of mastitis in dairy cattle. Animal Breeding Abstracts, 64: 847-857.
29. Mrode, R.A. and G.J.T. Swanson. 2003. Estimation of genetic parameters for somatic cell count in the first three lactations using random regression. Livestock Production Science, 79: 239-247. [DOI:10.1016/S0301-6226(02)00169-0]
30. Mrode, R.A., G.J.T. Swanson and M.S. Winters. 1998. Genetic parameters and evaluation for somatic cell count and its relationship with production and type traits in some dairy breeds in the United Kingdom. Journal of Animal Science, 66: 569-576. [DOI:10.1017/S1357729800009140]
31. Ødegard, J., J. Jensen, G. Klemetsdal, P. Madsen and B. Heringstad. 2003. Genetic analysis of somatic cell score in norwegian cattle using random regression test-day models. Journal of Dairy Science, 86: 4103-4114. [DOI:10.3168/jds.S0022-0302(03)74024-7]
32. Pagnacco, G., F. Miglior, W.C. Zhang, J.C.M. Dekkers and E.B. Burnside.1994. Genetic evaluation for somatic cell count and relationship with inbreeding in Canadian Holsteins. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, Guelph, Canada, 93-96 pp
33. Pösö, J. and E.A. Mäntysaari. 1996. Relationships between Clinical Mastitis, Somatic Cell Score and Production for the First Three Lactations of Finnish Ayrshire. Journal of Dairy Science, 79: 1284-1291. [DOI:10.3168/jds.S0022-0302(96)76483-4]
34. Ptak, E., P. Brzozowski, W. Jagusiak and K. Zdziarski. 2007. Genetic parameters for somatic cell score for polish black-and-white cattle estimated with a random regression model. Journal of Animal and Feed Sciences, 16: 357-369. [DOI:10.22358/jafs/66757/2007]
35. Reents, R., J. Jamrozik, L.R. Schaeffer and J.C.M. Dekkers. 1995. Estimation of genetic parameters for test day records of somatic cell score. Journal of Dairy Science, 78: 2847-2857. [DOI:10.3168/jds.S0022-0302(95)76915-6]
36. Reents, R., J.C.M. Dekkers and L.R. Schaeffer. 1994. Genetic Parameters of Test Day Somatic Cell Counts and Production Traits. Proceedings of The 5th World Congress on Genetics Applied To Livestock Production, Guelph, Canada, 120-123.
37. Rodriguez-Zas, S.L., D. Gianola and G.E. Shook. 200. Evaluation of models for somatic cell score lactation patterns in Holsteins. Livestock Production Science, 67: 19-30. [DOI:10.1016/S0301-6226(00)00193-7]
38. Rupp, R. and D. Boichard. 1999. Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits and milking ease in first lactation Holsteins. Journal of Dairy Science, 82: 2198-2204. [DOI:10.3168/jds.S0022-0302(99)75465-2]
39. Rzewuska, K., J. Jamrozik, A. Żarnecki and T. Strabel. 2011. Genetic parameters of test-day somatic cell scores for the first three lactations of polish Holstein-Friesian Cattle. Czech Journal of Animal Science, 56: 381-389.
40. Sanjabi, M.R., A. Gholibaigi Fard, R. Vaez Torshizi, A. Lavaf and A.H. Ahadi. 2010. Genetic relationships between somatic cell counts, milk production and udder conformation traits in Iranian Holsteins. Journal of Dairy Science, 93 (E-Suppl. 1): 598.
41. SAS. 2002. SAS users Guide v.9.1: Statistics SAS institute inc., Cary, NC.
42. Wada, Y. and N. Kashiwagi. 1990. Selecting statistical models with information statistics. Journal of Dairy Science, 73: 3575-3582. [DOI:10.3168/jds.S0022-0302(90)79058-3]
43. Yousefi-Golverdi, A., H. Hafezian, Y. Chashnidel and A. Farhadi. 2012. Genetic parameters and trends of production traits in Iranian Holstein population. African Journal of Biotechnology, 11: 2429-2435. [DOI:10.5897/AJB11.789]