دوره 13، شماره 36 - ( تابستان 1401 )                   جلد 13 شماره 36 صفحات 146-137 | برگشت به فهرست نسخه ها

XML English Abstract Print


گروه علوم کشاورزی، دانشگاه پیام نور، تهران، ایران
چکیده:   (401 مشاهده)
چکیده مبسوط
مقدمه و هدف: امروزه از شناسایی رشته‌های هموزایگوت Run of Homozygosity (ROH) برای تعیین میزان همخونی در ژنوم گوسفند استفاده می‌شود. محل رشته‌های هموزایگوت که به طور مستمر تحت انتخاب هستند یا حاوی جهش‌های مطلوب اند، تمایل به تثبیت شدن در ژنوم دارند و در طی سال‌ها جزایر ROH را تشکیل دهند. با شناسایی جزایر ROH مناطقی از ژنوم که حاوی ژن‌های اقتصادی مهم هستند، قابل شناسایی اند.
مواد و روش‌ها: در این پژوهش به منظور شناسایی جزایر ROH مرتبط با ژن‌های تحت اثر انتخاب، داده تعیین ژنوتیپ شده 2536 رأس گوسفند از 68 نژاد مختلف از سراسر دنیا با تراشه ی k50 گوسفندی مورد بررسی قرار گرفت. پس از کنترل کیفیت داده‌ها، پس از انجام تصحیحات 45341 جهش تک نوکلئوتیدی در 2009 راس گوسفند باقی ماند. رشته‌های هموزایگوت با استفاده از نرم افزار Plink v1.09 شناسایی شد. یک درصد از جهش‌های تک نولکئوتیدی با بالاترین فراوانی در رشته‌های هموزایگوت به عنوان جزایر ROH در نظر گرفته شد.
یافته‌ها: به طور کلی 465 جزیره ROH با طول Kb 27/43 تا Mb 17 شناسایی شد که کمتر از 1 درصد از ژنوم گوسفند را پوشش می‌داد. توزیع جزایر ROH در سرتاسر ژنوم یکنواخت نبود و از نژادی به نژاد دیگر متفاوت بود، اما برخی نقاط مشترک شناسایی شد. بیشترین و بلندترین جزایر ROH در نژادهای اروپایی، کمترین و کوتاه ترین به ترتیب در نژاد‌های آفریقایی و آمریکایی مشاهده شد. در این مطالعه 256 ژن در 111 جزیره ROH از کل 465 جزیره ی ROH شناسایی شد، که تقریبا یک چهارم از کل ژن‌های مرجع شناسایی شده در ژنوم گوسفند، در محدوده جزایر ROH یافت شد. در حدود 103 QTL مرتبط با صفات شیر، لاشه، وزن بدن، و پشم شناسایی شد.
نتیجه گیری: نتایج این پژوهش نشان داد که شکل گیری نژاد‌های گوسقند و انتخاب برای صفات مهم اقتصادی در طی سال‌های طولانی، منجر به شکل گیری قطعات هموزایگوت زیادی به نام جزایر ROH در ژنوم گوسفند شده است که اسکن این جزایر در سطح ژنوم می‌تواند به عنوان راهبرد جایگزین برای شناسایی ژن‌ها و جایگاه‌های مرتبط با صفات اقتصادی مهم باشد.
متن کامل [PDF 1318 kb]   (97 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ژنتیک و اصلاح نژاد دام
دریافت: 1400/7/4 | ویرایش نهایی: 1401/7/11 | پذیرش: 1400/10/14 | انتشار: 1401/7/11

فهرست منابع
1. Aali, M., H. Moradi-Shahrbabak, M. Moradi-Shahrbabak, M. Sadeghi and A.R. Yousefi. 2017. Association of the calpastatin genotypes, haplotypes, and SNPs with meat quality and fatty acid composition in two Iranian fat-and thin-tailed sheep breeds. Small Ruminant Research, 149: 40-51. [DOI:10.1016/j.smallrumres.2016.12.026]
2. Abied, A., L. Xu, B.W. Sahlu, F. Xing, A. Ahbara, Y. Pu, J. Lin, H. Berihulay, R. Islam, X. He, J.M. Mwacharo, Q. Zhao and Y. Ma. 2020. Genome-wide analysis revealed homozygosity and demographic history of five chinese sheep breeds adapted to different environments. Genes, 11: 1480-1492. [DOI:10.3390/genes11121480]
3. Al-Mamun, H.A., S.A. Clark, P. Kwan and C. Gondro. 2015. Genome-wide linkage disequilibrium and genetic diversity in five populations of Australian domestic sheep. Genetic Selection Evolution, 47: 90-104. [DOI:10.1186/s12711-015-0169-6]
4. Arora, R., H.S. Yadav and D.K. Yadav. 2014. Identification of novel single nucleotide polymorphisms in candidate genes for mutton quality in Indian sheep. Animal Molecular Breeding, 4: 1-15. [DOI:10.5376/amb.2014.04.0001]
5. Bayeriyar, M., H. Hafezian, A.H. Khaltabadi Farahani, A. Farhadi and H. Mohammadi. 2021. Bioinformatics Analysis of Some Genomic Regions in Sheep Population Based on Meta-Analysis. Animal Production, 12: 149-159 (In Persian).
6. Beynon, S.E., G.T. Slavov and M. Farre. 2015. Population structure and history of the Welsh sheep breeds determined by whole genome genotyping. BMC Genetics, 16: 65-72. [DOI:10.1186/s12863-015-0216-x]
7. Bosse, M., H.J. Megens, O. Madsen, Y. Paudel, L.A. Frantz and L.B. Schook. 2012. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape, PLoS Genetics, 8: 103-110. [DOI:10.1371/journal.pgen.1003100]
8. Broad, T., B. Glass, G. Greer, T. Robertson, W. Bain, E. Lord, J. McEwan and S. Peterson. 2000. Search for a locus near to myostatin that increases muscling in Texel sheep in New Zealand. In Proceedings of the New Zealand Society of Animal Production: Hamilton, New Zealand, 110-112 pp.
9. Broman, K.W. and J.L. Weber. 1999. Long homozygous chromosomal segments in reference families from the centre d'etude du polymorphisme humain. American Journal of Human Genetics, 65: [DOI:10.1086/302661]
10. Carothers, A.D., I. Rudan, I. Kolcic, O. Polasek and C. Hayward. 2006. Estimating human inbreeding coefficients: comparison of genealogical and marker heterozygosity approaches, American Journal of Human Genetics, 70: 666-676. [DOI:10.1111/j.1469-1809.2006.00263.x]
11. Cavanagh, C.R., E. Jonas, M. Hobbs, P.C. Thomson, I. Tammen and H.W. Raadsma. 2010. Mapping Quantitative Trait Loci (QTL) in sheep. III. QTL for carcass composition traits derived from CT scans and aligned with a meta-assembly for sheep and cattle carcass QTL. Genetic Selection Evolution, 36: [DOI:10.1186/1297-9686-42-36]
12. Chessa, B., F. Pereira, F. Arnaud, A. Amorim, F. Goyache and I. Mainland. 2009. Revealing the history of sheep domestication using retrovirus integrations. Science, 24: 532-536. [DOI:10.1126/science.1170587]
13. Ciani, E., S. Mastrangelo and A. da Silva. 2020. On the origin of European sheep as revealed by the diversity of the Balkan breeds and by optimizing population genetic analysis tools. Genetics Selection Evolution, 25: e52. [DOI:10.1186/s12711-020-00545-7]
14. Curik, I., M. Ferenčaković and S. Sölkner. 2014. Inbreeding and runs of homozygosity: A possible solution to an old problem. Livestock. Scence, 16: 24-34. [DOI:10.1016/j.livsci.2014.05.034]
15. Deniskova, T., A. Dotsev, M. Selionova, G. Brem and N. Zinovieva. 2021. Biodiversity of Russian local sheep breeds based on pattern of runs of homozygosity. Diversity, 1: 360-373. [DOI:10.3390/BDEE2021-09452]
16. Dzomba, E.F., M. Chimonyo and R. Pierneef. 2021. Runs of homozygosity analysis of South African sheep breeds from various production systems investigated using OvineSNP50k data. BMC Genomics, 7: e22. [DOI:10.1186/s12864-020-07314-2]
17. Ferencakovic, M., E. Hamzic, B. Gredler, I. Curik and J. Solkner. 2011. Runs of homozygosity reveal genome-wide autozygosity in the Austrian fleckvieh cattle. Agriculturae Conspectus Scientific's, 76: 325-328.
18. Ferenčaković, M., E. Hamzić, B. Gredler, T.R. Solberg, G. Klemetsdal and I. Curik. 2013. Estimates of autozygosity derived from runs of homozygosity: empirical evidence from selected cattle populations. Journal of Animal Breeding Genetics, 130: 286-293. [DOI:10.1111/jbg.12012]
19. Fontanesi, L., A. Rustempaši'c, M. Brka and V. Russo. 2012. Analysis of polymorphisms in the agouti signaling protein (ASIP) and melanocortin 1 receptor (MC1R) genes and association with coat colours in two Pramenka sheep types. Small Ruminant Research, 21: 89-96. [DOI:10.1016/j.smallrumres.2012.02.008]
20. García-Gámez, E., B. Gutiérrez-Gil, G. Sahana, J.P. Sánchez, Y. Bayón and J.J. Arranz. 2012. GWA analysis for milk production traits in dairy sheep and genetic support for a QTN influencing milk protein percentage in the LALBA gene. PLoS ONE, 7: e47782. [DOI:10.1371/journal.pone.0047782]
21. Gaspa, G., G. Marras, S. Sorbolini, P. Ajmone-Marsan, J.L. Williams, A. Valentini, C. Dimauro and N.N.P. Macciotta. 2014. Genome-wide homozygosity in Italian Holstein cattle using HD panel. In Proceedings of the 10th World Congress of Genetics Applied to Livestock Production, 17 to 22 August, Vancouver, BC, Canada.
22. Gibson, J., N.E. Morton and A. Collins. 2006. Extended tracts of homozygosity in outbred human populations. Human Molecular Genetics, 15: 789-795. [DOI:10.1093/hmg/ddi493]
23. Gurgul, A., T. Szmatoła, P. Topolski, I. Jasielczuk, K. Żukowski and A. Bugno-Poniewierska. 2016. The use of runs of homozygosity for estimation of recent inbreeding in Holstein cattle. Journal of Applied Genetics, 57: 527-530. [DOI:10.1007/s13353-016-0337-6]
24. Hanrahan, J.P., S.M. Gregan, P. Mulsant, M. Mullen, G.H. Davis, R. Powell and S.M. Galloway. 2004. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biological Reproduction, 70: 900-909. [DOI:10.1095/biolreprod.103.023093]
25. Herrero-Medrano, J.M., H.J. Megens, M.A.M. Groenen, G. Ramis, M. Bosse, M. Perez-Enciso and R.P.M.A. Crooijmans. 2013. Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula. BMC Genetics, 14: e106. [DOI:10.1186/1471-2156-14-106]
26. Hickford, J., R. Forrest, H. Zhou, Q. Fang, J. Han, C. Frampton and A. Horrell. 2020. Polymorphisms in the ovine myostatin gene (MSTN) and their association with growth and carcass traits in New Zealand Romney sheep. Animal Genetic, 41: 64-72. [DOI:10.1111/j.1365-2052.2009.01965.x]
27. Howrigan, D.P., M.A. Simonson and M.C. Keller. 2011. Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms. BMC Genomics, 12: e460. [DOI:10.1186/1471-2164-12-460]
28. Kijas, J.W., J.A. Lenstra, B. Hayes, S. Boitard, L.R. Porto Neto, M. San Cristobal, B. Servin,
29. R. McCulloch, V. Whan, K. Gietzen, S. Paiva, W. Barendse, E. Ciani, H. Raadsma, J. McEwan and
30. B. Dalrymple. 2012. Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biology, 10: e1001258. [DOI:10.1371/journal.pbio.1001258]
31. Kim, E.S., J.B. Cole, H. Huson, G.R. Wiggans, C.P. Van Tassell, B.A. Crooker, G. Liu, Y. Da and T.S. Sonstegard. 2013. Effect of artificial selection on runs of homozygosity in U.S. Holstein cattle. PLoS ONE, 8: e80813. [DOI:10.1371/journal.pone.0080813]
32. Kirin, M., R. McQuillan, C.S. Franklin, H. Campbell, P.M. McKeigue and J.F. Wilson. 2010. Genomic runs of homozygosity record population history and consanguinity, PLoS One, 5: e139965. [DOI:10.1371/journal.pone.0013996]
33. Kominakis, A., A.L. Hager-Theodorides, E. Zoidis, A. Saridaki, G. Antonakos and G. Tsiamis. 2017. Combined GWAS and 'guilt by association'-based prioritization analysis identifies functional candidate genes for body size in sheep. Genetics Selection Evolution, 49: e41. [DOI:10.1186/s12711-017-0316-3]
34. Kumar, N., M. Jayashankar, N. Ramakrishnappa, C. Nagaraja, N. Fairoze and K. Satyanarayana. 2015. Genetic polymorphism of ovine calpain gene in Bandur sheep. Int. Science Environment Technology, 4: e812.
35. Lawson Handley, L., K. Byrne and F. Santucci. 2007. Genetic structure of European sheep reeds, Heredity, 99: 620-631. [DOI:10.1038/sj.hdy.6801039]
36. Mahrous, K., M. Hassanane, H. Shafey, M.A. Mordy and H. Rushdi. 2016. Association between single nucleotide polymorphism in ovine Calpain gene and growth performance in three Egyptian sheep breeds. Journal of Genetic Engineering and Biotechnology, 14: 233-240. [DOI:10.1016/j.jgeb.2016.09.003]
37. Mastrangelo, S., E. Ciani, M.T. Sardina, G. Sottile, F. Pilla and B. Portolano. 2018. Runs of homozygosity reveal genome-wide autozygosity in Italian sheep breeds. Animal Genetics, 49: 71-81. [DOI:10.1111/age.12634]
38. Mastrangelo, S., H. Bahbahani, B. Moioli, A. Ahbara, M. Al Abri, F. Almathen, A. da Silva, I. Belabdi, B. Portolano, J. M. Mwacharo, O. Hanotte, F. Pilla and E. Ciani. 2019. Novel and known signals of selection for fat deposition in domestic sheep breeds from Africa and Eurasia. PLoS ONE, 14: e209632. [DOI:10.1371/journal.pone.0209632]
39. Mastrangelo, S., M. Tolone, M.T. Sardina, G. Sottile, A.M. Sutera, R. Di Gerlando and B. Portolano. 2017. Genome-wide scan for runs of homozygosity identifies potential candidate genes associated with local adaptation in Valle del Belice sheep. Genetics Selection Evolution, 49: e84. [DOI:10.1186/s12711-017-0360-z]
40. McMahon, C., R. Radcliff, K. Lookingland and H. Tucker. 2001. Neuroregulation of growth hormone secretion in domestic animals. Domestic Animal Endocrinology, 20: 65-87. [DOI:10.1016/S0739-7240(01)00084-4]
41. McQuillan, R., A.L. Leutenegger, R. Abdel-Rahman, C.S. Franklin, M. Pericic, L. Barac-Lauc. 2016. Runs of homozygosity in European populations, American Journal of Human Genetic, 83:359-372. [DOI:10.1016/j.ajhg.2008.08.007]
42. Mészáros, G., S.A. Boison, O. Pérez, M.A. Brien, M. Ferencˇaković, I. Curik, M.V. Da Silva, Y.T. Utsunomiya, J.F. Garcia and J. Sölkner J, 2015. Genomic analysis for managing small and endangered populations: a case study in Tyrol Grey cattle. Frontiers in Genetics, 6: e173. [DOI:10.3389/fgene.2015.00173]
43. Metzger, J., M. Karwath, R. Tonda, S. Beltran, L. Águeda, M. Gut, I.G. Gut and O. Distl. 2015. Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses. BMC Genomics, 9: e746. [DOI:10.1186/s12864-015-1977-3]
44. Moioli, B., M.C. Scatà, R. Steri, F. Napolitano and G. Catillo. 2013. Signatures of selection identify loci associated with milk yield in sheep. BMC Genetics, 14: e76. [DOI:10.1186/1471-2156-14-76]
45. Moradian, C., N. Mohamadi, S. Sheshdeh, A. Hajihosseinlo and F. Ashrafi. 2013. Effects of genetic polymorphismat the growth hormone gene on growth traits in Makooei sheep. European Journal of Experimental Biology, 3: 101-105.
46. Muchadeyi, F.C., M.T. Malesa, P. Soma and E.F. Dzomba. 2015. Runs of homozygosity in Swakara pelt producing sheep: implications on sub-vital performance. Proceedings for Association for the Advancement of Animal Breeding and Genetics, 21: 310-313.
47. Nosrati, M., H. Asadollahpour Nanaei, A. Javanmard and A. Esmailizadeh. 2021. The pattern of runs of homozygosity and genomic inbreeding in world-wide sheep populations. Genomics, 113: 1407-1415. [DOI:10.1016/j.ygeno.2021.03.005]
48. Nothnagel M., T. Lu, M. Kayser and M. Krawczak. 2010. Genomic and geographic distribution of SNP-defined runs of homozygosity in Europeans. Human Molecular Genetics, 19: 2927-2935. [DOI:10.1093/hmg/ddq198]
49. Pemberton, T., D. Absher, M. Feldman, R. Myers, N. Rosenberg and J. Li. 2012. Genomic patterns of homozygosity in worldwide human populations. American Journal of Human of Genetics, 91: 275-292. [DOI:10.1016/j.ajhg.2012.06.014]
50. Peripolli, E., D.P. Munari, M.V.G.B. Silva, A.L.F. Lima, R. Irgang, F. Baldi. 2017. Runs of homozygosity: current knowledge and applications in livestock. Animal Genetics, 48: 255-271. [DOI:10.1111/age.12526]
51. Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M.A. Ferreira, D. Bender, J. Maller, P. Sklar, P.I. de Bakker, M.J. Dalyand and P.C. Sham. 2007. PLINK: a tool set for whole genome association and population-based linkage analyses. American Journal of Human Genetics, 81: 559-575. [DOI:10.1086/519795]
52. Purfield, D.C., S. McParland, E. Wall and D.P. Berry. 2017. The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds. PLoS ONE, 12: e176780. [DOI:10.1371/journal.pone.0176780]
53. Qanbari, S., D. Gianola, B. Hayes, F. Schenkel, S. Miller, S. Moore, G. Thaller and H. Simianer. 2011. Application of site and haplotype-frequency based approaches for detecting selection signatures in cattle. BMC Genomics, 12: e318. [DOI:10.1186/1471-2164-12-318]
54. Qanbari, S., E.C.G. Pimentel, J. Tetens, G. Thaller, P. Lichtner, A.R. Sharifi and H. Simianer. 2010. The pattern of linkage disequilibrium in German Holstein cattle. Animal Genetics, 41: 346-356. [DOI:10.1111/j.1365-2052.2009.02011.x]
55. Sahu, A.R., V. Jeichitra, R. Rajendran and A. Raja. 2017. Polymorphism in exon 3 of myostatin (MSTN) gene and its association with growth traits in Indian sheep breeds. Small Ruminant Research, 149: 81-84. [DOI:10.1016/j.smallrumres.2017.01.009]
56. Shanmuga, A., A. Nagarajan and S. Pramanayagam. 2018. Non-coding DNA-a brief review. Journal of Applied Biology & Biotechnology, 5: 42-47.
57. Shakeri, R., A. Javanmard, K. Hasanpur, M. Abbasi, M. Mazlom, M. Khansefid and M. Rahimi Varposhti. 2021. Assessment of Genetic Diversity Within Holstein Population using Bovine SNP Chip Data. Research On Animal Production, 12: 140-149 (In Persian).
58. Silio, M., M.C. Rodríguez, A. Fernandez, C. Barrag'an, R. Benítez and C. Ovilo. 2013. Measuring inbreeding and inbreeding depression on pig growth from pedigree or SNP-derived metrics, Journal of Animal Breeding and Genetics, 130: 349-360. [DOI:10.1111/jbg.12031]
59. Solkner J., M. Ferencakovic, B. Gredler, I. Curik. 2010 .Genomic metrics of individual autozygosity, applied to a cattle population, in: Proceedings of the 61st Annual Meeting of the European Association of Animal Production. Heraklion, Greece.
60. Sölkner, J., Z. Karimi, O. Pérez, A.M. Brien, G. Mészáros, S. Eaglen and S.A. Boison. 2014. Extremely non-uniform: patterns of runs of Homozygosity in bovine populations. Vancouver: 10th World Congress on Genetics Applied to Livestock Production, 123-134 pp.
61. Stella, A., P. Ajmone-Marsan, B. Lazzari and P. Boettcher. 2010. Identification of selection signatures in cattle breeds selected for dairy production. Genetics, 185: 1451-1461. [DOI:10.1534/genetics.110.116111]
62. Szmatoła, T., A. Gurgul, K. Ropka-molik, I. Jasielczuk, Z. Tomasz and M. Bugno-poniewierska. 2016. Characteristics of runs of homozygosity in selected cattle breeds maintained in Poland. Livestock Science, 188: 72-80. [DOI:10.1016/j.livsci.2016.04.006]
63. Zhang, Q., M.P. Calus, B. Guldbrandtsen, M.S. Lund and G. Sahana. 2015. Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genetics, 16: e88. [DOI:10.1186/s12863-015-0227-7]
64. Shakeri, R., A. Javanmard, K. Hasanpur, M. Abbasi, M. Mazlom, M. Khansefid and M. Rahimi Varposhti. 2021. Assessment of Genetic Diversity Within Holstein Population using Bovine SNP Chip Data. Research On Animal Production, 12: 140-149 (In Persian).
65. Bayeriyar, M., H. Hafezian, A.H. Khaltabadi farahani, A. Farhadi and H. Mohammadi. 2021. Bioinformatics Analysis of Some Genomic Regions in Sheep Population Based on Meta-Analysis. Animal Production, 12: 149-159 (In Persian).

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.