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Figure 1. The mean prediction accuracies using different x values in the normal and gamma distributions of QTL
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Abstract

The purpose of this study was to compare the accuracy of genomic evaluation for Bayes A,
Bayes B, Bayes C and Bayes L multi-step methods and SSBR-C and SSBR-A sinale-step
methods in the different values of x for predicting genomic breeding values of the genotyped
and non-genotyped animals. A genome with 40000 SNPs on the 20 chromosom was simulated
with the same distance (100cM). The = values that maximized the prediction accuracies in
BayesC were 0.980 and 0.995 for the normal and gamma distributions of QTL, respectively, and
were also used in SSBR-C method. Genomic prediction accuracy in the SSBR-C (x = 0.99)
method was higher than multi step methods from 0.02 to 0.09 for gamma distribution. Results
showed that considering mixture distribution and use of phenotype, genotype and pedigree
information simultaneously, the SSBR-C (n = 0.99) method had higher accuracy than other
methods and is considered a better choice in this scenario. Moreover, both single and multi-step
methods showed similar prediction accuracy when the genetic architecture appeared to approach
the normal distribution. Furthermore, SSBR-C (x = 0) method appeared to be more reliable
choice that was due to regressions of true breeding value on estimated breeding value close to
one in normal distribution. Generally, GEBV accuracy decreased as the distance increased
between validations and training set, which was more sensitive for non-genotyped individuals
compared to genotyped individuals.
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