دوره 8، شماره 15 - ( بهار 1396 )                   جلد 8 شماره 15 صفحات 149-154 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Genomic Evaluation of Threshold Traits with Different Genetic Architecture using Bayesian Approaches. rap. 2017; 8 (15) :149-154
URL: http://rap.sanru.ac.ir/article-1-761-fa.html
بانه حسن، نجاتی جوارمی اردشیر، رحیمی میانجی قدرت، هنرور محمود. ارزیابی ژنومی صفات آستانه ای با معماری های ژنتیکی متفاوت با استفاده از روش‌های بیزی. پژوهشهاي توليدات دامي. 1396; 8 (15) :149-154

URL: http://rap.sanru.ac.ir/article-1-761-fa.html


دکتری
چکیده:   (550 مشاهده)

این مطالعه به منظور بررسی صحت روش‌های مختلف بیزی در پیش‌بینی ارزش‌های اصلاحی ژنومی برای صفات آستانه­ای با معماری ژنتیکی متفاوت از نظر توزیع اثرات ژنی و تعداد جایگاه مؤثر بر صفت کمی انجام شد. ژنومی شامل سه کروموزوم هر یک به طول یک مورگان، و بر روی هر کروموزوم2000 نشان‌گر چندشکلی تک­نوکلئوتیدی شبیه‌سازی شد. تعداد QTLهای فرض شده 01/0، 05/0 و 10/0 کل SNPها بودند که با توزیع اثرات نرمال، گاما و یکنواخت شبیه‌سازی شدند. صفات آستانه‌ای مورد مطالعه شامل یک صفت یک آستانه‌ای (زنده­مانی) و یک صفت دو آستانه‌ای (تعداد فرزند در هر زایش) بود. ارزش‌های اصلاحی ژنومی افراد جمعیت مرجع و تأیید با استفاده از اثرات نشان‌گری برآورد شده توسط رگرسیون ریج بیزی(BRR)، بیز A (Bayes A)، بیز B (Bayes B)، بیز C (Bayes C) و بیز L (Bayes L)پیش‌بینی شد. مقایسه صحت پیش‌بینی روش‌ها (همبستگی بین ارزش‌های اصلاحی برآورد شده و واقعی) نشان داد که روش‌های بیزی روش‌های قدرتمندی بوده و تفاوت معنی‌داری در ارزیابی ژنومی صفات آستانه‌ای ندارند. کارایی روش‌ها در ارزیابی صفت دوآستانه‌ای به طور معنی‌داری از صفت یک آستانه‌ای بالاتر بود. نوسانات غیرمعنی‌دار و غیرمنظمی در صحت روش‌های مورد مطالعه بین تعداد مختلف QTL و توزیع‌های مختلف آماری مشاهده شد. هم‌چنین نتایج نشان داد که افزایش فاصله بین جمعیت مرجع و هدف، به دلیل شکستن فاز پیوستگی (LD) بین نشان‌گر و QTL، صحت پیش‌بینی ارزش‌های اصلاحی ژنومی حیوانات را به‌طور معنی‌داری کاهش می­دهد.

متن کامل [PDF 400 kb]   (309 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي

فهرست منابع
1. Abdollahi-Arpanahi, R., A. Pakdel, A. Nejati-Javaremi and M. Moradi Shahrbabak. 2013. Comparison of Genomic Evaluation Methods in Complex Traits with Different Genetic Architecture. Journal of Animal Production, 15: 65-77.
2. Bastiaansen, J.W.M., A. Coster, M.P.L. Calus, J.A.M. Van Arendonk and H. Bovenhuis. 2012. Longterm Response to Genomic Selection: Effects of Estimation Method and Reference Population Structure for Different Genetic Architectures. Genetics Selection Evolution, 44: 1-13. [DOI:10.1186/1297-9686-44-3]
3. Calus, M.P.L., A.P.W. De Roos and R.F. Veerkamp. 2008. Accuracy of Genomic Selection Using Different Methods to Define Haplotypes. Genetics, 178: 553-561. [DOI:10.1534/genetics.107.080838]
4. Calus, M.P.L. and R.F. Veerkamp. 2007. Accuracy of Breeding Values when Using and Ignoring the Polygenic Effect in Genomic Breeding Value Estimation with a Marker Density of One SNP per cM. Journal of Animal Breeding and Genetics, 124: 362-368. [DOI:10.1111/j.1439-0388.2007.00691.x]
5. Clark, S.A., J.M. Hickey and J.H.J. van der Werf. 2011. Different Models of Genetic Variation and Their Effect on Genomic Evaluation. Genetics Selection Evolution, 43: 18-27. [DOI:10.1186/1297-9686-43-18]
6. Daetwyler, H.D., R. Pong-Wong, B. Villanueva and J.A. Woolliams. 2010. Theimpactof genetic architecture on genome-wide evaluation methods. Genetics, 185: 1021-31. [DOI:10.1534/genetics.110.116855]
7. De losCampos, G. and P. Pérez. 2013a. BGLR=Bayesian Generalized Linear Regression. R Package Version 1.0. https://r-forge.r-project.org/R/?group_id=1525.
8. De los Campos, G., J.M. Hickey, R. Pong-Wong, H.D. Daetwyler and M.P.L. Calus. 2013b. Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding. Genetics, 193: 327-345. [DOI:10.1534/genetics.112.143313]
9. Dekkers, J.C. 2004. Commercial Application of Marker- and Gene-Assisted Selection in Livestock: Strategies and Lessons. Journal of Animal Science, 82: E-Suppl: E313–E328.
10. Gianola, D. (1982). Theory and Analysis of Threshold Characters Journal of Science, 54: 1079-1096.
11. Goddard, M. 2008. Genomic Selection Prediction of Accuracy and Maximisation of Long Term Response. Genetica, 136: 245-257. [DOI:10.1007/s10709-008-9308-0]
12. Goddard, M.E. and B.J. Hayes. 2007. Genomic Selection. Journal of Animal Breeding and Genetics, 124: 323-330. [DOI:10.1111/j.1439-0388.2007.00702.x]
13. González-Recio, O. and S. Forni. 2011. Genome-wide Prediction of Discrete Traits Using Bayesian Regressions and Machine Learning. Genetics Selection Evolution, 43: 1-12. [DOI:10.1186/1297-9686-43-7]
14. Habier, D., R.L. Fernando, K. Kizilkayaand D.J. Garrick. 2011. Extension of the Bayesian alphabet for Genomic Selection. BMC Bioinformatics, 12: 186-197. [DOI:10.1186/1471-2105-12-186]
15. Heslot, N., M.E. Sorrells, J.L. Jannink and H.P. Yang. 2012. Genomic Selection in Plant Breeding: a Comparison of Models. Crop Science, 52: 146-160. [DOI:10.2135/cropsci2011.06.0297]
16. Lund, M.S., G. Sahana, D.J. De Koning, G. Su and Ö. Carlborg. 2009 Comparison of Analyses of the QTLMAS XII Common Dataset. I: Genomic selection. BMC Proc. 3(Suppl. 1): S1. [DOI:10.1186/1753-6561-3-s1-s1]
17. McRae, A.F., J.C. McEwan, K.G. Dodds, T. Wilson, A.M. Crawford and J. Slate. 2002. Linkage Disequilibrium in Domestic Sheep. Genetics, 160: 1113-1122.
18. Meuwissen, T.H., B.J. Hayes and M.E. Goddard. 2001. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics, 157: 1819-1829.
19. Meuwissen, T., T.R. Solberg, R. Shepherd and J.A. Woolliams. 2009. A Fast Algorithm for BayesB Type of Prediction of Genome-Wide Estimates of Genetic Value. Genetics Selection Evolution, 41: 1-10. [DOI:10.1186/1297-9686-41-2]
20. Muir, W.M. 2007. Comparison of Genomic and Traditional BLUP-Estimated Breeding Value Accuracy and Selection Response under Alternative Trait and Genomic Parameters. Animal Breeding and Genetics, 124: 342-355. [DOI:10.1111/j.1439-0388.2007.00700.x]
21. Nejati-Javaremi, A., C. Smith and J.P. Gibson. 1997. Effect of Total Allelic Relationship on Accuracy of Evaluation and Response to Selection. Journal of Animal Science, 75: 1738-1745. [DOI:10.2527/1997.7571738x]
22. Park, T. and G. Casella. 2008. The Bayesian Lasso. American Statistical Association, 103: 681-686. [DOI:10.1198/016214508000000337]
23. Pszczola, M., T. Strabel, A. Wolc, S. Mucha and M. Szydlowski. 2011. Comparison of Analyses of the QTLMAS XIV Common Dataset. I: Genomic Selection. BMC Proc. 5(Suppl. 3): S1.
24. Resende, M.F.R. Jr., P. Mu-oz, M.D.V. Resende, D.J. Garrick, R.L. Fernando, J M. Davis, E.J. Jokela, T.A. Martin, G.F. Peter and M.Kirst. 2012 Accuracy of Genomic Selection Methods in a Standard Dataset of Loblolly Pine (Pinus taeda L.).Genetics, 190: 1503-1510. [DOI:10.1534/genetics.111.137026]
25. Shirali, M., S.R. Miraei-Ashtiani, A. Pakdel, C. Haley and R. Pong-Wong. 2012. Comparison between Bayes C. and GBLUP in Estimating Genomic Breeding Values under Different QTL Variance Distributions, in Abstract from ICQG2012-4th International Conference on Quantitative Genetics, Edinburgh, United Kingdom, pp: 261-268.
26. Solberg, T.R., A.K. Sonesson, J.A. Woolliams and T.H.E. Meuwissen. 2008. Genomic Selection using Different Marker Types and Densities. Journal of Animal Science, 86: 2447-2454. [DOI:10.2527/jas.2007-0010]
27. Son, J., H. Kang, J. Kim, J.E. Park and D. Lee. 2014. Accuracy of Genomic Prediction in Simulated Pig Populations. Proceedings, 10th World Congress of Genetics Applied to Livestock Production, Canada.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
کد امنیتی را در کادر بنویسید

کلیه حقوق این وب سایت متعلق به پژوهشهای تولیدات دامی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2015 All Rights Reserved | Research On Animal Production(Scientific and Research)

Designed & Developed by : Yektaweb